அரைக்கோளம்

ஒரு கோளமானது அதன் மையத்தின் வழியே செல்லும் எந்தவொரு தளத்தினாலும் இரண்டு சமமான அரைக்கோளங்களாகப் பிரிக்கப்படுகிறது. இரு தளங்கள் கோளத்தின் மையத்தின் வழியே செல்லுமானால் அவை கோளத்தை நான்கு சமமான பிறைகளாகப்(lunes) பிரிக்கும். இப்பிறைகளின் உச்சிகள் அந்த இரு தளங்களும் வெட்டிக்கொள்ளும் கோட்டின்(கோளத்தின் விட்டம்) முனைகளாக இருக்கும்.
கோளத்தை வெட்டும் இரு தளங்களும் கோளத்தின் மையத்தின் வழிச் செல்லாவிட்டால் அவற்றால் வெட்டப்பட்ட பகுதி கோளப்பகுதி எனப்படும்
கோளங்களை எந்தவொரு உயர் பரிமாணத்துக்கும் பொதுமைப்படுத்தலாம். n ஒரு இயல் எண் எனில், ஒருn-கோளம்(Sn) என்பது, (n + 1)-பரிமாண யூக்ளிடின் வெளியில், அவ்வெளியின் மையத்திலிருந்து r அளவு மாறாத தூரத்தில் அமையும் புள்ளிகளின் தொகுப்பாகும். இங்கு r ஒரு நேர்ம மெய்யெண்ணாகும்.
  • ஒரு 0-கோளம் என்பது மெய்யெண்கோட்டில் அமையும் இடைவெளி (−rr) -ன் ஓரப் புள்ளிகள்.
  • 1-கோளம் என்பது r அளவு ஆரமுள்ள ஒரு வட்டம்.
  • 2-கோளம் என்பது சாதாரணக் கோளமாகும்.
  • 3-கோளம் என்பது 4-பரிமாண யூக்ளிடின் வெளியில் அமையும் கோளம்.
n > 2 எனில், கோளங்கள் மீக்கோளங்கள்(hypersphere) என சிலசமயங்களில் அழைக்கப்படுகின்றன.
1 அலகு ஆரமுள்ள (n − 1)-கோளத்தின் மேற்பரப்பு:
2 \frac{\pi^{n/2}}{\Gamma(n/2)}
இங்கு Γ(z) -ஆய்லரின் காமா சார்பாகும்(Euler's Gamma function).
மேற்பரப்பின் மற்றொரு வாய்ப்பாடு:

 \begin{cases}
 \displaystyle \frac{(2\pi)^{n/2}\,r^{n-1}}{2 \cdot 4 \cdots (n-2)}, & \text{if } n \text{ is even}; \\ \\
 \displaystyle \frac{2(2\pi)^{(n-1)/2}\,r^{n-1}}{1 \cdot 3 \cdots (n-2)}, & \text{if } n \text{ is odd}.
 \end{cases}
கன அளவு, மேற்பரப்பில் {r \over n} மடங்காகும் அல்லது:

 \begin{cases}
 \displaystyle \frac{(2\pi)^{n/2}\,r^n}{2 \cdot 4 \cdots n}, & \text{if } n \text{ is even}; \\ \\
 \displaystyle \frac{2(2\pi)^{(n-1)/2}\,r^n}{1 \cdot 3 \cdots n}, & \text{if } n \text{ is odd}.
 \end{cases}
Share on Google Plus

About digital

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.
    Blogger Comment
    Facebook Comment

0 comments:

Post a Comment