கோளத்தின் மேற்பரப்பு காணும் வாய்ப்பாடு:
இந்த வாய்ப்பாட்டை முதலில் கண்டுபிடித்த ஆர்க்கிமிடீஸ், ஒரு கோளத்தை அதைச் சுற்றி வரையப்பட்ட உருளையின் பக்கப்பரப்பின்மீது வீழ்த்தினாலும் பரப்பில் மாற்றமில்லை என்ற கருத்தை அடைப்படையாகக் கொண்டு இவ்வாய்ப்பாட்டை நிறுவியுள்ளார். கோளத்தின் கனஅளவு காணும் வாய்ப்பாட்டை r -ஐப் பொறுத்து வகையிடுதல் மூலமும் மேற்பரப்பு காணும் வாய்ப்பாட்டைப் பெற முடியும். ஏனெனில் மையங்கள் ஒரே புள்ளியில் இருக்குமாறு, ஆரம் 0 முதல் ஆரம் r வரையுள்ள நுண்ணிய தடிமன் கொண்ட எண்ணற்ற கோளவடிவ ஓடுகளை ஒன்றுக்குள் ஒன்றாக மிகநெருக்கமாக அடுக்கி வைக்கப்பட்டுள்ளதாக எடுத்துக் கொண்டால் இக்கோளவடிவ ஓடுகளின் கனஅளவுகளின் கூடுதலாகக் கோளத்தின் கனஅளவைக் கருதலாம். இக்கோளவடிவ ஓடுகளின் தடிமனை நுண்ணிய அளவாக எடுத்துக் கொள்வதால் ஓடுகளின் உள் மேற்பரப்பிற்கும் வெளி மேற்பரப்பிற்கும் உள்ள வித்தியாசமும் மிக நுண்ணிய அளவுள்ளதாகத்தான் இருக்கும். ஆரம் r -ஆக உள்ள இடத்திலுள்ள கோளவடிவ ஓட்டின் சிறிய கனஅளவானது, ஆரம் r -லுள்ள மேற்பரப்பு மற்றும் நுண்ணிய தடிமன் இரண்டின் பெருக்குத்தொகையாகும்.
தரப்பட்ட ஆரம் r -ல், கூடும்கனஅளவு (δV) -ன் மதிப்பு, ஆரம் r -இடத்திலுள்ள ஓட்டின் மேற்பரப்பு (A(r)) மற்றும் ஓட்டின் தடிமன் (δr) இரண்டின் பெருக்குத்தொகையாகும்:
கோளத்தின் மொத்த கன அளவு:
δr -ன் மதிப்பு பூச்சியத்தை நோக்கி அணுகும் எல்லை நிலையில் [1] இக்கனஅளவு:
ஏற்கனவே முன்பு நாம் கண்டுபிடித்திருக்கும் கோளத்தின் கனஅளவின் வாய்ப்பாட்டை V -க்கு பதிலிட:
இருபுறமும் r -ஐப் பொறுத்து வகையிட, A -ன் மதிப்பு r -ன் சார்பாகக் கிடைக்கிறது:
சுருக்கமாக:
மற்றொரு வகையில் கோளத்தின் சிறுமேற்பரப்பு:
கோள ஆயதொலைவுகளில்:
- .
கார்ட்டீசியன் ஆயதொலைவுகளில்:
- .
மொத்த மேற்பரப்புக் காணத் தொகையிட:
0 comments:
Post a Comment